Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
Add filters

Document Type
Year range
1.
Dongbei Daxue Xuebao/Journal of Northeastern University ; 44(4):486-494, 2023.
Article in Chinese | Scopus | ID: covidwho-20245271

ABSTRACT

Based on the SEIR model, two compartments for self-protection and isolation are introduced, and a more general infectious disease transmission model is proposed.Through qualitative analysis of the model, the basic reproduction number of the model is calculated, and the local asymptotic stability of the disease-free equilibrium point and the endemic equilibrium point of the model is analyzed through eigenvalue theory and Routh-Hurwitz criterion.The numerical simulation and fitting results of COVID-19 virus show that the proposed SEIQRP model can effectively describe the dynamic transmission process of the infectious disease.In the model, the three parameters, i.e.protection rate, incubation period isolation rate, and infected person isolation rate play a very critical role in the spread of the disease.Raising people's awareness of self-protection, focusing on screening for patients in the incubation period, and isolating and treating infected people can effectively reduce the spread of infectious diseases. © 2023 Northeastern University.All rights reserved.

2.
Atemwegs- und Lungenkrankheiten ; 49(4):129-133, 2023.
Article in German | EMBASE | ID: covidwho-20242600

ABSTRACT

The coronavirus SARS-CoV-2 was detected in isolates of pneumonia patients in January 2020. The virus cannot multiply extracellularly but requires access to the cells of a host organism. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as a receptor, to which it docks with its spikes. ACE2 belongs to the renin angiotensin system (RAS), whose inhibitors have been used for years against high blood pressure. Renin is an endopeptidase that is predominantly formed in the juxtaglomerular apparatus of the kidney and cleaves the decapeptide angiotensin I (Ang I) from angiotensinogen. Through the angiotensin-converting enzyme (ACE), another 2 C-terminal amino acids are removed from Ang I, so that finally the active octapeptide angiotensin II (Ang II) is formed. The biological effect of Ang II via the angiotensin II receptor subtype 1 (AT1-R) consists of vasoconstriction, fibrosis, proliferation, inflammation, and thrombosis formation. ACE2 is a peptidase that is a homolog of ACE. ACE2 is predominantly expressed by pulmonary alveolar epithelial cells in humans and has been detected in arterial and venous endothelial cells. In contrast to the dicarboxy-peptidase ACE, ACE2 is a monocarboxypeptidase that cleaves only one amino acid from the C-terminal end of the peptides. ACE2 can hydrolyze the nonapeptide Ang-(1-9) from the decapeptide Ang I and the heptapeptide Ang-(1-7) from the octapeptide Ang II. Ang-(1-7) acts predominantly antagonistically (vasodilatory, anti-fibrotic, anti-proliferative, anti-inflammatory, anti-thrombogenetically) via the G protein-coupled Mas receptor to the AT1-R-mediated effects of Ang II. In the pathogenesis of COVID-19 infection, it is therefore assumed that there is an imbalance due to overstimulation of the AT1 receptor in conjunction with a weakening of the biological effects of the Mas receptor.Copyright © 2022 Dustri-Verlag Dr. K. Feistle.

3.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(8 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20242368

ABSTRACT

The TG6002.03 trial is a dose-escalation phase 1 clinical trial of TG6002 infusion via the hepatic artery in patients with liver-dominant colorectal cancer metastases. TG6002 is an engineered Copenhagen strain oncolytic Vaccinia virus, deleted of thymidine kinase and ribonucleotide reductase to enhance tumor selective viral replication and expressing FCU1, an enzyme converting the non-cytotoxic prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic compound 5-fluorouracil (5-FU). In this trial, patients with advanced unresectable liver-dominant metastatic colorectal cancer who had failed previous oxaliplatin and irinotecan-based chemotherapy were treated with up to 2 cycles of TG6002 infusion 6 weeks apart via the hepatic artery on day 1 combined with oral 5-FC on days 5 to 14 (where day 1 = TG6002 infusion). TG6002 infusion was performed over 30 minutes via selective catheterization of the hepatic artery proper. 5-FC oral dosing was 50mg/kg x4 daily. Blood was sampled for TG6002 pharmacokinetics and 5-FC and 5-FU measurements. Sampling of liver metastases was performed at screening and on day 4 or day 8 for virus detection and 5-FC and 5-FU quantification. In total, 15 patients (median age 61 years, range 37-78) were treated in 1 UK centre and 2 centres in France and received a dose of TG6002 of 1 x 106 (n=3), 1 x 107 (n=3), 1 x 108 (n=3), or 1 x 109 pfu (n=6). Fourteen of the 15 patients received a single cycle of treatment, including one patient who did not received 5-FC, and one patient received two cycles. TG6002 was transiently detected in plasma following administration, suggesting a strong tissue selectivity for viral replication. In the highest dose cohort, a virus rebound was observed on day 8, concordant with replication time of the virus. In serum samples, 5-FU was present on day 8 in all patients with a high variability ranging from 0.8 to 1072 ng/mL and was measurable over several days after initiation of therapy. Seven of the 9 patients evaluable showed the biodistribution of the virus in liver lesions by PCR testing on day 4 or day 8. Translational blood samples showed evidence for T-cell activation and immune checkpoint receptor-ligand expression. At 1 x 109 pfu, there was evidence for T-cell proliferation and activation against tumour-associated antigens by ELISpot and for immunogenic cell death. In terms of safety, a total of 34 TG6002-related adverse events were reported, of which 32 were grade 1-2 and 2 were grade 3. The maximum tolerated dose was not reached, and a single dose-limiting toxicity was observed consisting of a myocardial infarction in a context of recent Covid-19 infection in a 78-year-old patient. These results indicate that TG6002 infused via the hepatic artery in combination with oral 5-FC was well tolerated, effectively localized and replicated in the tumor tissues, expressed its therapeutic payload and showed anti-tumoral immunological activity.

4.
Annals of the Rheumatic Diseases ; 82(Suppl 1):578, 2023.
Article in English | ProQuest Central | ID: covidwho-20242313

ABSTRACT

BackgroundAnti-MDA5 antibody positive dermatomyositis (MDA5-DM) is characterized by high mortality due to rapid progressive ILD. MDA5 is a cytosolic protein and a family of RIG-I like receptor, which functions as a virus RNA sensor and induces the production of such as type-1 IFN. Although little is known about the pathogenesis of MDA5-DM, it is notable that the similarities were reported between COVID-19 infection and MDA5-DM. It may suggest that there is a common underlying autoinflammatory mechanism. We reported that in MDA5-DM, (1) RIG-I-like receptor signaling is enhanced and (2) antiviral responses such as type 1 IFN signaling are also enhanced as compare with anti-ARS-antibody positive DM, and (3) the key for survival is suppression of RIG-I-like and IFN signaling (EULAR2022, POS0390). We also found that a significant role for uncontrolled macrophage in the pathogenesis of ILD by our autopsy case. Recently, it has been reported that tacrolimus (TAC) and cyclophosphamide (CY) combination therapy (TC-Tx) has improved the prognosis of cases with early onset of the disease, but there are cases that cannot be saved. Therefore, we devised BRT therapy (BRT-Tx). The Tx combines baricitinib (BAR), which inhibits GM-CSF and IFN-mediated signaling and effectively suppresses uncontrolled macrophages, with rituximab (RTX) and TAC, which rapidly inhibits B and T cell interaction and ultimately prevents anti-MDA5 antibody production.ObjectivesTo determine the differences in gene expression between BRT and TC-Tx for MDA5-DM in peripheral blood.MethodsTotal of 6 MDA5-DM (TC: 3, BRT: 3) were included and all of them had multiple poor prognostic factors. Peripheral whole blood was collected at just before and 2-3 months after the treatment. RNA was extracted, and quantified using a next-generation sequencer. Differentially Expressed Genes (DEGs) were identified by pre vs. post treatment. Gene Ontology (GO), clustering and Gene Set Variation Analysis (GSVA) were performed to DEGs. As one BRT case was added since our last year's report, we also reanalyzed the surviving vs. fatal cases. The IFN signature was scored separately for Types 1, 2, and 3, and the changes between pre- and post-treatment were investigated.ResultsTwo of three cases with TC died during treatment, while all three cases on BRT recovered. The cluster analysis of the DEGs separated deaths from survivors, not by type of treatment. Comparing surviving and dead cases, GO analysis revealed that the immune system via immunoglobulins and B cells was significantly suppressed in surviving cases. GO analysis of DEGs in each therapeutic group showed that expression of B cell-related genes such as lymphocyte proliferation and B cell receptor signaling pathway were significantly suppressed in BRT-Tx. On the other hand, TC-Tx significantly suppressed such pathways as cell proliferation and cell surface receptor signaling, and was less specific for the target cells than BRT-Tx. The changes in IFN signature score after treatment showed an increase in type 2 and 3 IFN scores in all fatal cases and an increase in type 1 IFN score in one fatal case.ConclusionBRT-Tx significantly suppressed gene expression associated with B cells, while TC-Tx was characterized by low specificity of therapeutic targets and suppression of total cell proliferation. Comparison of surviving and dead cases revealed that the combination of RTX contributed to the success of treatment, as suppression of the immune system mediated by immunoglobulins and B cells is the key for survival. Analysis of the IFN signature revealed an increase in IFN score after treatment in fatal cases, indicating that the combination of BAR is beneficial. The superiority of BRT-Tx seems clear from the fact that all patients survived with BRT-Tx while only one/three patients survived with TC-Tx.REFERENCES:NIL.Acknowledgements:NIL.Disclosure of InterestsMoe Sakamoto: None declared, Yu Nakai: None declared, Yoshiharu Sato: None declared, Yoshinobu Koyama Speakers bureau: Abbvie, Asahikasei, Ayumi, BMS, Esai, Eli-Lilly, Mitsubishi Tanabe, Grant/research support from: Abbvie, GSK.

5.
Journal of Economic Animal ; 27(1):74-78, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-20239651

ABSTRACT

Porcine deltacoronavirus (PDCOV) is a new type of pig intestinal coronavirus, which targets pig small intestinal epithelial cells to cause severe enteritis. After infecting the host, PDCoV finishes its proliferation in the host cell by antagonism or escape the innate immune signaling transduction pathway. In order to understand the action mechanism of PDCOV 0n the congenital immune signal transduction pathways, this paper reviews the effects of PDCOV on RLR, Jak-STAT, MAPK and mitochondrial signaling pathway to clarify the relationship between PDCOV and host innate immune signaling transduction pathways in order to provide help for the prevention and treatment of PDCOV infection.

6.
Cytotherapy ; 25(6 Supplement):S72, 2023.
Article in English | EMBASE | ID: covidwho-20239522

ABSTRACT

Background & Aim: The pro-angiogenic, immunoregulatory and anti- inflammatory properties of MSCs are being exploited for the development of cellular therapies, including the treatment of graft versus host disease (GvHD), inflammatory bowel disease and COVID-19. SNBTS have developed a GMP process to bank umbilical cord MSCs (UC-MSCs) whereby we can reliably bank 100 vials of 10 million P2 UC-MSCs per cord. Each of these vials can be extensively expanded and stored for specific applications. The ultimate aim of the bank is for off-the-shelf clinical use, e.g., in GvHD or as an adjuvant therapy in Islet transplantations. Methods, Results & Conclusion(s): During process development, different basal media and supplements were screened for proliferation and MSC marker expression. Cells grown in promising media combinations were then tested for tri-lineage differentiation (identity), their chemokine/cytokine expression and T-cell inhibition (function) assessed. Medium selected for further GMP development and scale up was ultimately determined by all round performance and regulatory compliance. GMP-like UC-MSCs were shown to have immune-modulatory activity in T-cell proliferation assays at 4:1 or 16:1 ratios. Co-culture of UC-MSCs and freshly isolated leukocytes, +/- the immune activating agent LPS, show a dose dependent survival effect on leukocytes. In particular, neutrophils, which are normally very short lived in vitro demonstrated increased viability when co-cultured with UCMSCs. The survival effect was partially reproduced when UC-MSC were replaced with conditioned medium or cell lysate indicating the involvement of soluble factors. This improved neutrophil survival also correlates with results from leukocyte migration studies that demonstrate neutrophils to be the main cell type attracted to MSCs in in vitro and in vivo. Genetic modification of UC-MSC may improve their therapeutic potential. We have tested gene editing by CRISPR/Cas9 technology in primary UC-MSCS. The CXCL8 gene, highly expressed in UC-MSC, was targeted in isolates from several different donors with editing efficiencies of 78-96% observed. This translated to significant knockdown of CXCL8 protein levels in resting cells, however after stimulation levels of CXCL8 were found to be very similar in edited and non-edited UC-MSCs. This observation requires further study, but overall the results show the potential to generate future banks of primary UC-MSCS with genetically enhanced pro-angiogenic, immunoregulatory and/or anti-inflammatory activities.Copyright © 2023 International Society for Cell & Gene Therapy

7.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(11):1135-1141, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-20238997

ABSTRACT

Previous studies have revealed that developmental regulated brain protein (Drebrin) is involved in cell- to-cell communication, nerve transmission, tumor metastasis, spermatogenesis and other life activities, but there are few studies on viruses. The aim of the current research was therefore, to study the function of Drebrin and its effect on the proliferation of porcine epidemic diarrhea virus (PEDV). The Drebrin gene was cloned according to the Drebrin gene sequence (XM_008015438.2) of Chlorocebus sabaeus registered by GenBank, and the phylogenetic tree was constructed to analyze its homology. The results showed that the CDS region of Vero cells Drebrin gene was 2088 bp long, encoding 695 amino acids, and was relatively conserved and had high homology with all species. To investigate the effect of Drebrin on the proliferation of PEDV in Vero cells, the eukaryotic expression vector pcDNA3.1-Drebrin-Flag was constructed. After transfection of Vero cells with different concentrations of pcDNA3.1-Drebrin-Flag, cells were infected with PEDV. Our results showed that overexpression of Drebrin in Vero cells could significantly inhibit the intracellular PEDV mRNA level and N protein expression, reduce the extracellular virus titer and inhibit the proliferation of PEDV. Further study on the interaction between Drebrin and PEDV S proteins by laser confocal technique was also performed. The results showed that Drebrin and S protein were co-located in the cytoplasm, suggesting that the two proteins may interact with each other. This study demonstrated for the first time that Drebrin can inhibit PEDV proliferation in Vero cells, laying a foundation for further research in to Drebrin function and provides a valuable information for anti-PEDV research.

8.
Mikrobiolohichnyi Zhurnal ; 85(1):36-45, 2023.
Article in English | EMBASE | ID: covidwho-20236345

ABSTRACT

Within the conditions of the ongoing COVID-19 pandemic, when many questions regarding prevention and treatment strategies remain unsolved and the search for the best antiviral agents is underway, attention should be paid to the role of trace elements zinc and selenium in increasing the body's resistance to viral infections and their direct antiviral activity against SARS-CoV-2. Experimental data show that trace elements zinc and selenium not only actthrough regulating the immune response at all levels of humoral and cellular immunity, but also can play a significant role in adjuvant therapy for viral diseases. This is especially relevant in the case of COVID-19. Studies of the direct antiviral effect of these micro-elements testify to its 3 main ways to SARS-Cov-2: I - counteraction to virus replication and its transcription through: (i) their covalent binding to the SH-group of the cysteine of the main protease M(Pro) of the virus;(ii) inhibition of its RNA polymerase activity by zinc;II - preventing the penetration of the virus into cells due to blocking SH-groups of protein disulfide isomerase (RDI) of the protein of its spikes (peplomers);III - decreasing the adsorption capacity of the virus due to the blocking of the electrostatic interaction of SARS-CoV-2 peplomers and angiotensin-converting enzyme (ACE-2) in ultra-low, uncharacteristic oxidation states (Zn+1and Se-2). The intensity of the antiviral action of these trace elements may depend on their chemical form. It was found that zinc citrate (a five-membered complex of zinc with citric acid) and monoselenium citric acid obtained with the help of nanotechnology have a greater intensity of action and higher chemical purity. Taking into account the immunostimulating and direct antiviral effect of zinc and selenium, their use in the form of pharmaceuticals and dietary supplements should be considered as adjunctive therapy for SARS-CoV-2 in patients, or as a preventive strategy for uninfected people from risk groups during the spread of COVID-19.Copyright © Publisher PH <<Akademperiodyka>> of the NAS of Ukraine, 2023.

9.
Modern Pediatrics ; Ukraine.(1):72-86, 2023.
Article in Ukrainian | EMBASE | ID: covidwho-20235001

ABSTRACT

Langerhans cell histiocytosis (LCH) is an abnormal clonal proliferation of Langerhans cells. The prognosis varies depending on the form of the disease and organ damage. Any organs and systems can be involved in the pathological process in various combinations. A poor response to standard therapy and an unfavorable prognosis are characteristic of patients with a multisystem form of LCH and involvement of organs at risk. Skin lesions are a classic sign of LCH. Purpose - to describe the complexity and duration of diagnosis of LCH with multisystem damage in a boy aged 2 years and 2 months, infected with poliomyelitis and coronavirus. Clinical case. The first clinical manifestations of LCH in the child debuted with an eczematous-seborrheic rash on the scalp with spread to the limbs and trunk. The child was treated for toxicoderma, hemorrhagic vasculitis at the place of residence for 6 months. The boy lost 1.5 kg of body weight in 1 month. At the time of hospitalization, seborrheic-eczematous rashes on the skin with a hemorrhagic component, trophic-inflammatory changes in the nails of the hands, signs of protein-energy deficiency, stomatitis, gingivitis, hepatosplenomegaly, polyserositis, diabetes insipidus, osteolytic foci of the frontal bones were found. Results of the tests: anemia, thrombocytopenia, hypoproteinemia and hypoalbuminemia, coagulation disorders. The patient had the onset of lower flaccid paraparesis, muscle hypotonia. The boy was diagnosed with a number of infectious complications, including poliomyelitis (a derivative of vaccine poliovirus type 2), COVID-19. The child received LCH-III cytostatic therapy with a positive effect. The research was carried out in accordance with the principles of the Helsinki Declaration. The informed consent of the patient was obtained for conducting the studies.Copyright © 2023 Institute of Physics of the Russian Academy of Sciences. All rights reserved.

10.
Lecture Notes in Electrical Engineering ; 954:91-98, 2023.
Article in English | Scopus | ID: covidwho-20234834

ABSTRACT

Beside the unexpected toll of mortality and morbidity caused by COVID-19 worldwide, low- and middle-income countries are more suffering from the devastating issues on economic and social life. This disease has fostered mathematical modelling. In this paper, a SEIAR mathematical model is presented to illustrate how policymakers may apply efficient strategies to end or at least to control the devastating wide spread of COVID-19. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

11.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20234125

ABSTRACT

Breast cancer is the most common form of cancer and the second cancer-causing death in females. Although remission rates are high if detected early, survival rates drop substantially when breast cancer becomes metastatic. The most common sites of metastatic breast cancer are bone, liver and lung. Respiratory viral infections inflict illnesses on countless people. The latest pandemic caused by the respiratory virus, SARS-CoV-2, has infected more than 600 million worldwide, with documented COVID-related death upward of 1 million in the United States alone. Respiratory viral infections result in increased inflammation with immune cell influx and expansion to facilitate viral clearance. Prior studies have shown that inflammation, including through neutrophils, can contribute to dormant cancer cells reawakening and outgrowth. Moreover, inhibition of IL6 has been shown to decrease breast cancer lung metastasis in mouse models. However, how respiratory viral infections contribute to breast cancer lung metastasis remains to be unraveled. Using MMTV/PyMT and MMTV/NEU mouse models of breast cancer lung metastasis and influenza A virus as a model respiratory virus, we demonstrated that acute influenza infection and the accompanying inflammation and immune cell influx awakens and dramatically increased proliferation and expansion of dormant disseminated cancer cells (DCC) in the lungs. Acute influenza infection leads to immune influx and expansion, including neutrophils and macrophages, with increased proportion of MHCII+ macrophages in early time points, and a sustained decrease in CD206+ macrophages starting 6 days post-infection until 28 days after the initial infection. Additionally, we observed a sustained accumulation of CD4+ T cells around expanding tumor cells for as long as 28 days after the infection. Notably, neutrophil depletion or IL6 knockout reversed the flu-induced dormant cell expansion in the lung. Finally, awakened DCC exhibited downregulation of vimentin immunoreactivity, suggesting a role for phenotypic plasticity in DCC outgrowth following viral infection. In conclusion, we show that respiratory viral infections awaken and increase proliferation of dormant breast cancer cells in the lung, and that depletion of neutrophils or blocking IL6 reverses influenza-induced dormant cell awakening and proliferation.

12.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20232118

ABSTRACT

Respiratory viral infections (RVI) such as influenza and COVID19 impact the host systemic immune system along with causing deleterious chronic inflammatory responses and respiratory distress. While the role of chronic inflammation in cancer is well-established, the role of RVI on tumorigenesis is poorly defined. To study the role of RVI on breast cancer, we first infected murine respiratory epithelial cells (mRES) with murine sendai virus (mSV), an analog for human parainfluenza virus. These infected mRES were co-cultured with 4T1 murine breast cancer cells in 1:1 dilution on a single 2D plate and also in trans-well format. Both in co-culture and transwell culture we saw a 40- 80% (p<0.05) increased proliferation of breast cancer cells. Similarly, when 4T1 cells were treated with the supernatant collected from infected mRES cells in 1:5 dilution, also demonstrated a 2.3 fold increased breast cancer cell proliferation. The cytokine analysis from the supernatant collected from infected mRES cells demonstrated a 17-23 fold enhanced secretion of alpha/beta-defensins. Direct treatment of alpha-defensin (cyptidin-4, 10 pg/mL) and beta-defensin-3 (mBD3, 20 pg/mL) on 4T1 cells demonstrated enhanced expression of chemokine metastatic receptor, CXCR4 (4.3 fold), angiogenic factor, VEGF (12.8 fold) and cell division favoring factor, CDK2 (8.1 fold). Further, analysis of infected mRES cells demonstrated upregulation of toll-like receptor 2 (TLR2) and NODlike receptor protein 3 (NLRP3) expression. Interesting, co-cultured of infected mRES with syngeneic murine CD4 T cells induced exhaustion phenotype (PD1+ and CTLA4+ ) differentiation of CD4 T cells. Taken together, these data suggest that respiratory viral infections through induction of cancer cell proliferation and inhibiting anti-tumor adaptive immune responses promote breast cancer proliferation.

13.
Cytotherapy ; 25(6 Supplement):S211, 2023.
Article in English | EMBASE | ID: covidwho-20231957

ABSTRACT

Background & Aim: Immunocompromised patients are susceptible to high-risk opportunistic infections and malignant diseases. If available, most antiviral and antifungal drugs are quite toxic, relatively ineffective, and induce resistance in the long term. Methods, Results & Conclusion(s): We have previously demonstrated the safety of adoptive cell therapy for COVID-19 patients with CD45RA negative cells containing SARS-CoV-2-specific T cells from a donor, chosen based on HLA compatibility and cellular response to SARS-CoV-2 peptide pools. After finishing a Phase 2 randomized multicenter clinical trial (RELEASE, NCT04578210), we concluded that the infusion is safe, effective, accelerates lymphocyte recovery and shows hallmarks of an immune response. To use adoptive cell therapy to treat COVID-19 it would be necessary to develop a biobank of living drugs. For that, we examined the immune evolution performing a longitudinal analysis from previously SARS-CoV-2 infected and infection- naive individuals covering 21 months from infection. Cellular responses were maintained over time while humoral responses increased after vaccination but were gradually lost. Therefore, the best donors would be recovered individuals and two months after vaccination. We also evaluated the effect of dexamethasone (current standard of care treatment for COVID-19 and other infections involving lymphopenia) and Interleukin-15 (cytokine involved in T-cell maintenance and survival) on CD45RA negative. Dexamethasone did not alter cell functionality, proliferation or phenotype at a clinical-practice concentration, while interleukin-15 increased the memory T-cell and T-regulatory cell activation state, and interferon gamma release. Furthermore, we applied the adoptive passive transfer of CD45RA negative cells containing pathogen-specific memory T-cells to other infectious diseases characterized by sustained lymphopenia. We infused six immunocompromised patients with Cytomegalovirus, BK virus, Aspergillus, and Epstein-Barr virus lymphoproliferative disease. Patients experienced pathogen clearance, resolution of symptoms and lymphocyte increase. Transient microchimerism was detected in three patients. The use of CD45RA negative cells containing specific memory T cells of a third-party donor for treating severe pathogenic diseases in immunocompromised patients is feasible, safe, and effective, and has an advantage over other cell therapies such as lower costs and a less complex regulatory environment.Copyright © 2023 International Society for Cell & Gene Therapy

14.
Journal of Electronic Imaging ; 32(2), 2023.
Article in English | Scopus | ID: covidwho-2321319

ABSTRACT

Computed tomography (CT) image-based medical recognition is extensively used for COVID recognition as it improves recognition and scanning rate. A method for intelligent compression and recognition system-based vision computing for CT COVID (ICRS-VC-COVID) was developed. The proposed system first preprocesses lung CT COVID images. Segmentation is then used to split the image into two regions: nonregion of interest (NROI) with fractal lossy compression and region of interest with context tree weighting lossless. Subsequently, a fast discrete curvelet transform (FDCT) is applied. Finally, vector quantization is implemented through the encoder, channel, and decoder. Two experiments were conducted to test the proposed ICRS-VC-COVID. The first evaluated the segmentation compression, FDCT, wavelet transform, and discrete curvelet transform (DCT). The second evaluated the FDCT, wavelet transform, and DCT with segmentation. It demonstrates a significant improvement in performance parameters, such as mean square error, peak signal-to-noise ratio, and compression ratio. At similar computational complexity, the proposed ICRS-VC-COVID is superior to some existing techniques. Moreover, at the same bit rate, it significantly improves the quality of the image. Thus, the proposed method can enable lung CT COVID images to be applied for disease recognition with low computational power and space. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.32.2.021404] © 2023 SPIE. All rights reserved.

15.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2324929

ABSTRACT

COVID-19 has threatened human lives. However, the efficiency of combined interventions on COVID-19 has not been accurately analyzed. In this study, an improved SEIR model considering both real human indoor close contact behaviors and personal susceptibility to COVID-19 was established. Taking Hong Kong as an example, a quantitative efficiency assessment of combined interventions (i.e. close contact reduction, vaccination, mask-wearing, school closures, workplace closures, and body temperature screening in public places) was carried out. The results showed that the infection risk of COVID-19 of students, workers, and non-workers/students were 3.1%, 8.7%, and 13.6%, respectively. The basic reproduction number R0 was equal to 1 when the close contact reduction rate was 59.9% or the vaccination rate reached 89.5%. The results could provide scientific support for interventions on COVID-19 prevention and control. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

16.
34th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2022 ; 2022-October:1002-1006, 2022.
Article in English | Scopus | ID: covidwho-2319639

ABSTRACT

Since the beginning of the COVID-19 pandemic, remote conferencing and school-teaching have become important tools. The previous applications aim to save the commuting cost with real-time interactions. However, our application is going to lower the production and reproduction costs when preparing the communication materials. This paper proposes a system called Pre-Avatar, generating a presentation video with a talking face of a target speaker with 1 front-face photo and a 3-minute voice recording. Technically, the system consists of three main modules, user experience interface (UEI), talking face module and few-shot text-to-speech (TTS) module. The system firstly clones the target speaker's voice, and then generates the speech, and finally generate an avatar with appropriate lip and head movements. Under any scenario, users only need to replace slides with different notes to generate another new video. The demo has been released here11https://pre-avatar.github.io/ and will be published as free software for use. © 2022 IEEE.

17.
International Journal of Fuzzy System Applications ; 11(1), 2022.
Article in English | Scopus | ID: covidwho-2319302

ABSTRACT

The COVID-19 pandemic has affected the whole world quite seriously. The number of new infectious cases and death cases are rapidly increasing over time. In this study, a theoretical linguistic fuzzy rule-based susceptible-exposed-infectious-isolated-recovered (SEIIsR) compartmental model has been proposed to predict the dynamics of the transmission of COVID-19 over time considering population immunity and infectiousness heterogeneity based on viral load in the model. The model's equilibrium points have been calculated, and stability analysis of the model's equilibrium points has been conducted. Consequently, the fuzzy basic reproduction number, R0f, of the fuzzy model has been formulated. Finally, the temporal dynamics of different compartmental populations with immunity and infectiousness heterogeneity using the fuzzy Mamdani model are delineated, and some disease control policies have been suggested to get over the infection in no time. Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

18.
Gerontologie et Societe ; 44(3):115-129, 2022.
Article in French | Scopus | ID: covidwho-2318512

ABSTRACT

The major restrictions on rights and freedoms imposed by the management of the COVID-19 crisis have caused significant psychological, and sometimes physical, suffering for older people with decreased independence living in collective housing. Without calling into question the decisions made by these housing establishments, which for the most part were motivated by a desire and need to protect their residents, the aim of this contribution is to question the processes that led—and still lead—to decisions restricting freedom, the proportionality of which may be questioned. In fact, those managing such establishments have had to make decisions in an ambiguous legal and social context, marked by the proliferation of non-decisive guidelines and recommendations (soft law acts), which has led to practical difficulties in the implementation of health standards within the establishments and has had a considerable impact on residents' individual freedoms. Some of these restrictions could be described as forms of abuse. © 2022 Fondation Nationale de Gerontologie. All rights reserved. Les restrictions majeures de droits et libertés imposées par la gestion de la crise épidémique de Covid-19 ont engendré des souffrances psychiques et parfois physiques importantes pour les personnes âgées vivant en établissement d'hébergement pour personnes dépendantes. Sans remettre en cause les décisions des établissements qui, pour une large majorité, ont été motivées par la volonté et la nécessité de protéger leurs résidents, l'objectif de cette contribution vise à interroger les processus qui ont conduit – et conduisent encore – à des décisions restrictives de liberté dont la proportionnalité peut être discutée. En effet, les directions d'établissement ont dû prendre des décisions dans un contexte juridique et social ambigu, marqué par le foisonnement d'orientations et de recommandations non décisoires (actes de droit souple), ce qui a engendré des difficultés pratiques dans la mise en œuvre des normes sanitaires au sein des établissements et a eu un impact considérable sur l'exercice des libertés individuelles des résidents dont certaines restrictions pourraient être qualifiées de forme de maltraitance. © 2022 Fondation Nationale de Gerontologie. All rights reserved.

19.
Leukemia Research ; Conference: The 17th International Congress on Myelodysplastic Syndromes. Marseille France. 128(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2316951

ABSTRACT

Background And Aims: S100A8 and S100A9 alarmins and their heterodimer calprotectin are diversely involved in myeloid neoplasm pathophysiology as well as infectious and inflammatory diseases. In the context of COVID-19, circulating calprotectin was identified as a powerful biomarker of disease severity. Calprotectin impact on CD34+ hematopoietic stem and progenitor cells remains poorly understood. Method(s): Calprotectin effects on healthy donor and chronic myeloid neoplasm-derived CD34-positive hematopoietic stem and progenitor cells were tested in liquid culture for up to 7 days. The pro-inflammatory cytokine IL-6 was used as a control. Cytokine effects alone or in combination were explored by the use of bulk and single cell RNA sequencing, Assay for Transposase-Accessible Chromatin with high-throughput sequencing, cytokine secretion analyses and semi-solid cultures. Result(s): CD34+ cells exposed to IL-6 generate monocytic cells that overproduce calprotectin. Calprotectin inhibits erythroid differentiation of healthy CD34+ cells, possibly through CD36 receptor. Chronic myeloid neoplasm CD34+ cells over-react to calprotectin, with large transcriptomic rewiring of erythro-megakarocytic and granulo-monocytic populations. Calprotectin-induced inhibition of erythroid progenitor proliferation correlates with increased synthesis of ribosomal subunits and p53 pathway activation, while the cytokine impact on granulo-monocytic cells indicates an autocrine or paracrine amplification loop. Conclusion(s): Calprotectin secreted by monocytes generated by CD34+ cells upon IL-6 stimulation may be a pathophysiological component of inflammatory anemia, a role that is amplified in the context of myeloid neoplasms in which calprotectin effects extend to the granulo-monocytic lineage.Copyright © 2023 Elsevier Ltd. All rights reserved.

20.
Saglik Bilimleri Tip Dergisi, Firat Universitesi ; 36(2):151-155, 2022.
Article in English | GIM | ID: covidwho-2315970

ABSTRACT

Objective: This study aimed to retrospectively evaluate the cases of healthy adults, diagnosed with histologically confirmed organizing pneumonia and had shortness of breath and fatigue persist for at least three months in the post-COVID-19 period. Materials and Methods: Seventeen patients admitted to our hospital with shortness of breath and fatigue complaints between September 2020 and May 2021 were diagnosed with SARS-CoV-2 infection at least three months before the last admission and diagnosed with organizing pneumonia confirmed both radiologically and pathologically were included. Results: All of the patients were previously hospitalized due to COVID-19. The median time elapsed between the diagnosis of COVID-19 and recurrent hospitalization due to organizing pneumonia was four months. Our patients had bilateral lobular;subpleural densities vary from ground glass to the middle/lower lung consolidation, which is the typical radiological feature of organizing pneumonia. Partial lobular excision of the lung was performed in all patients. Intra-alveolar exudate, characterized by granulation tissue and fibroblast proliferation in the lung parenchyma, was detected in all patients. Conclusion: We believe that secondary organizing pneumonia should be considered among patients with COVID-19 pneumonia, especially in the case of persistent or recurrent respiratory symptoms and ongoing lung infiltrates. Thus, it will be possible to provide the proper medical approaches instead of unnecessary surgical intervention.

SELECTION OF CITATIONS
SEARCH DETAIL